
Introduction

Problem
How do you resolve collisions between dynamic circles and static lines?

Collision Detection

?

Check if a collision occurs between two objects.

1. Create a function that describes
the distance between the objects
over time (Hubbard, 1993)

2. Solve for when the objects are
less than their radii apart from
each other (Heuvel & Jackson,
2002)

3. If there is no solution, there is no
collision

• Physical simulations

public static final Point closestpointonline(float lx1, float ly1,
float lx2, float ly2, float x0, float y0){

float A1 = (ly2 - ly1);
float B1 = (lx1 - lx2);
double C1 = (ly2 - ly1)*lx1 + (lx1 - lx2)*ly1;
double C2 = -B1*x0 + A1*y0;
double det = (A1*A1 - (-B1*B1));
double cx = 0;
double cy = 0;
if(det != 0){

cx = (float)((A1*C1 - B1*C2)/det);
cy = (float)((A1*C2 - -B1*C1)/det);

}else{
cx = x0;
cy = y0;

}
return new Point(cx, cy);

}

Collision Response

Calculate the resultant velocities.

• Obey the Law of Conservation of
Momentum

• Obey the Law of Conservation of
Energy

• Coefficient of restitution (CR)
• Each axis is independent

?

Goal
• Create a collision simulation algorithm using Java 1.6 to that can handle correctly collisions between

static lines and dynamic circles
• Algorithm should run at an acceptable speed with a reasonable number of circles and lines to ensure its

practicality
 100 moving circles with a radius of 10 pixels
 100 static lines with a length of 20 pixels
 60 frames per second

• Lines have zero thickness and a finite length
• Circles sweep an area as they travel
• Endpoints must be treated differently from the line itself

Code Appendix

• Each dark line and dot represent one set of
arguments passed to the
closestpointonline function

• The bright line connects the input point and
the closest point on the input line

• Finding the closest point on a line to an input point is useful for determining how close a point and a
line are to each other

• Below is a function that returns the closest point on a line given a line and a point, as implemented and
used in my algorithm

 Collision detection and response are intertwined
(Moore & Williams, 1988)

 Objects must be compared in pairs (Hahn, 1988)

• Collisions

 Predictable and deterministic (Mirtich B., 1996)
 Movement is split up into discrete units for speed

reasons (Mirtich B., 2000)

• Objects in Simulations

 Contain positions and velocities (Hubbard, 1995)
 Stored in a list in random order (Hubbard, 1995)

• Static Objects
 Are immobile
 Energy that would have moved the object is reflected

and returned to object that hit it

Algorithm
1. Start with a moving circle and a non-moving line.

2. Check to see if a collision has occurred at all.

Check if the circle has already intersected
with the line.

Check if the path of the circle intersects
with the line.

Check if the area swept out by the circle by its movement intersects with the line.

3. Figure out the location of the circle relative to the line using voroni regions.

5. Calculate resultant velocity of the circle.

If the circle collided with an endpoint,
treat the endpoint as a static circle with
zero radius.

If the circle collided with the side of the line,
reflect the movement vector over the normal
to the line.

4. Resolve the collision by determining the exact time and location of the collision.

Whether the circle collides with the line or an endpoint determines the course of action.

•If the path of the circle intersects with the
line and does not go near an endpoint, then
it is a simple surface collision

•If the path of the circle contains an endpoint
and intersects with the line, then it is an
endpoint collision

•The movement vector does not intersect
with the line, but the circle collides with an
endpoint.

Edge cases

•The side of the circle may collide with the
endpoint when approaching from the line
side of the endpoint.

•When the angle is shallow, the circle may
intersect with the line at a point behind the
circle’s movement vector.

(resultants shown for clarity)

•The circle may cross the line at a point
beyond the endpoint of the line.

1. Linear algebra, or matrices, are used to calculate the point of
intersection between two lines.

3. The closest point on a line to a point formula is used
to determine if the circle collides with the endpoint
of the line.

4. If the circle collides with an endpoint, determine
which endpoint it collided into.

Conservation of Momentum (p) Conservation of Energy (E)

Along each axis, these laws are used to calculate the resultant velocity:

Which gives us this optimized formula for circle-endpoint collisions:

2. If the point of collision is between the endpoints of the line, the
line segments intersect

• The movement vector, or single-frame velocity of the circle
is treated as a line segment for the linear algebra.

1. Find closest point on the line to the center of the circle
2. If distance between point and center of circle is less than the

radius, there is a collision

1. Find the point of intersection between the movement vector
of the circle and the line, assuming they extend to infinity

2. If point of collision is between endpoints of both lines, there
is a collision

6. Travel remaining length necessary to match velocity. 7. Translate circle to new position.

Conclusion

Future Work

• Algorithm is realistic and accurate
• Edge cases handled correctly
• Use of the square root function is minimized by

using linear algebra
• Computation time is directly related to number of

circles, thus algorithm is O(nm)
• Greater variation in computation time as number

of circles increases
• Maximum computation time increases as the

number of circles increases

Results

Experiment

• Intel Core 2 Duo E6600
• 2 GB DDR2 RAM
• Nvidia GeForce 9800GT
• Windows XP Professional SP3
• Java 6 Update 17

Test Computer Specifications
1. 100 lines arranged in 50 crosses each composed

of 2 lines
2. Circles then placed with random velocities

• Number of circles varied from 1 – 100
• Radius of circles varied from 1 – 20 pixels,

varying the frequency of collisions

3. List of lines and circles passed to algorithm
4. Computation time for each pass through the

algorithm recorded

• Optimize to reduce running time
• Resolve an unusual edge case (Figure 1)

Initial State Frame 300 Final State

• Average of 19.2 frames per second with 100 circles and
100 lines, well under the target of 60 FPS with

• Algorithm is not time reversible
• Computation time has a slight relationship to the

frequency of collisions
• Average computation time varies more as the

frequency of collisions increases
• Maximum computation time is highly variable against

the frequency of collisions

Figure 1 Figure 2

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

Number of Circles

Computation Time vs. Number of
Circles

Average

Maximum

• Radius of 10 pixels used

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

Radius (pixels)

Computation Time vs. Frequency
of Collisions

Average

Maximum

• 100 circles used

No collision between circles

5. Algorithm run for 600 frames

• System.nanoTime() used to measure
the current time

• Collision off walls calculated and included
in time elapsed, but not included in
number of lines

Large radius Low number of
circles

Works Cited
• Hahn, J. K. (1988). Realistic Animation of Rigid Bodies. Computer Graphics , 22 (4), 299-308.
• Heuvel, J. v., & Jackson, M. (2002, Janurary 18). Pool Hall Lessons: Fast, Accurate Collision Detection Between Circles or Spheres. Gamasutra .
• Hubbard, P. M. (1995). Collision Detection for Interactive Graphics Applications. IEEE Transactions on Visualization and Computer Graphics , 1 (3), 218-230.
• Hubbard, P. M. (1993). Interactive Collision Detection. Proceedings of IEEE Symposium on Research Frontiers in Virtual Reality, (pp. 24-31). San Jose, CA, USA.
• Mirtich, B. (2000). Timewarp rigid body simulation. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (pp. 193-200). New York, NY USA: ACM

Press/Addison-Wesley Publishing Co.
• Mirtich, B. V. (1996). Impulse-Based Dynamic Simulation of Rigid Body Systems. Department of Computer Science, University of California, Berkeley.
• Moore, M., & Williams, J. (1988). Collision Detection and Response for Computer Animation. Computer Graphics , 289-298.

	eric-leong_poster_left.pdf
	eric-leong_poster_center.pdf
	eric-leong_poster_right.pdf

